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According to modern representations, the transition to turbulence in the boundary layer 
can occur because of flow instability to small perturbations. The initial stage of such a 
process is described by the linear theory of hydrodynamic stability. 

The classical approach to the problem is based on an examination of the elementary wave 
perturbations [I] in a longitudinally homogeneous flow. That the motion is not parallel is 
taken into account by corrections to the approximations [2]. 

Under natural conditions the fluctuations are localized in space. A whole spectrum of 
oscillations is excited during evolution, and changes occur in space and time. 

A problem with initial data simulates such a process. Its investigation invokes great 
interest and is of practical value for the determination of the transition zone [I-17]. A 
set of data is obtained about the evolution of narrow wave packets in parallel and slightly 
nonparallel flows [3-14]. Nevertheless, problems remain that require solution. In particu- 
lar, the question of the behavior of fluctuations of arbitrary shape in the boundary layer 
requires clarification. The space--time linear evolution of perturbations in a nonparallel 
boundary layer is examined in this paper. 

Ordinarily the asymptotic behavior of a packet of Tollmien--Schlichting (TS) waves is 
analyzed in papers without discussing the connection with the initial distribution [I, 3-13]. 
Meanwhile, such a distribution plays an important part in the instability development law. 
We illustrate this by the example of a packet of TS-waves in a two-dimensional Blasius-type 
flow. 

In this case the perturbation field is described by a dimensionless stream function 
which we represent in the form 
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where ~(~) = ~x- ~(~)t; ~(~) = ~(s) + iy(~) is the eigenfrequency, <p(y, =) is the eigenfunc- 
tion of the Orr--Sommerfeld problem, s0 is the central wave number, J is the remainder term, 
A(~) is the initial amplitude, and 
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The main contribution is introduced by the wave number domain (s0 -- 6, s0 + 6), which 

is found from the condition 

62t max ( l~" (~0 ) ] ,  17"(~0)]) ~ i .  

If there is a peak in the distribution at t = O, say 
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where 5cr ~ z -l << ~0, then 6 >> A~ and 
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The case of  a s p a t i a l l y  l o c a l i z e d  p e r t u r b a t i o n  i s  most o f t e n  examined i n  the  t h e o r y  o f  
hyd rodynamic  s t a b i l i t y .  Then A~ ~ z -~ ~ ~ > ~ and the  wave packe t  i s  sepa ra ted  ou t  because 
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of the existence of c~----am,~ y(c~ m) = max ?(c~) >'0 . For t>?-x(~m)>i a0~--- ~m and 
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under the conditions 
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Conditions (3) follow from the requirement of smallness of J and neglect of the devia- 
tion of the maximum of the integrand in (2) from e = ~m" The method of analysis performed 
(the Gauss method) is well known in plasma physics [18]. Let us note that its applicability 
in the theory of hydrodynamic instability was investigated numerically in [5]. The inequali- 
ties (3) yield analytic estimates of its accuracy: the solution (2) tends to the exact solu- 
tion in the circle L = Ix/t --w'(am)l + 0 whose dimensions diminish (L ~ t-l/2). Conse- 
quently, the Gauss method is applicable for analysis of the evolution of the maximum packet 
intensity but not its shape. 

It follows from (I) and (2) that even in a parallel flow where the wave properties are 
determined completely by the dispersion equation ~ = ~(a), different initial conditions spec- 
ify a difference in the evolution laws. 

In a nonparallel flow the problem is complicated substantially. There is not complete 
separation of the transverse and wave structures [6]. The local spectrum is deformed in both 

and in x. Formation of a train of localized initial perturbation has no explicit- physical 
basis. For t >> I it does not degenerate absolutely into such a wave. Nevertheless, known 
papers are constrained to the examination of this case and are constructed under the assump- 
tion of invariance of the packet carrier frequency [6-8, 12-15]. Investigation of the evolu- 
tion of boundary layer perturbations of an arbitrary initial kind is the basic aim of this 
paper. 

Let us examine two-dimensional motion. We introduce the dimensionless stream function 
T(x, y, t) = ~0(x, y) + ~(x, y, t), where T0 describes the unperturbed field, and ~) its per- 
turbation 
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Making the quantities dimensionless is performed by the standard method with respect 
to the free stream velocity Uoo and the appropriate length I. 

Slowness of the longitudinal variation holds: 

= max 0 [ Re_~I| 

To the accuracy of 0(~) we arrive at a linear stability problem in the parallel stream. Its 
solution can be found by a Fourier--Laplace transform [4, 11]: 
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Here ~n(h), ~n(~) are determined by the Orr--Sommerfeld problem, the subscripts n, (k) denote 
the discrete and continuous spectrum modes, and ~n(~) is the solution of the adjoint problem. 
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The condition of applicability of a local parallel approximation ~0/v >> I is true for a 
perturbation with An(k)(~) , where An(k)(~) ~ 0 for I~I < I~01. The wave properties are deter- 
mined by the dispersion relation 

~n(o~) ---- (o~(~) -t- ~,n(o~), ~(~)(~) = - - i ( a  2 -t- k ~ -F ~o: Re U~)/Re = o(~)(a) -F iy(~)(a). 

There is a unique mode (TS), unstable in a certain Re range, in the boundary layer. In 
principle, damped waves [19], primarily with Iy/ml << I, can even turn out to be important for 
transition. A change in the main flow velocity profile in the motion direction changes the 
local perturbation spectrum at scales much greater than ~=~, 0 l n l ~ ( ~ ) ,  ~ ( ~ ) 1 / O x ~  ~<<~ 

The solution of (14) can be found by expansion in the parameter v/~0 % ~ << I: 
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w~ere  ~) Xo H- ~x; "~ = ~t; a~(~) = An(~)evn(~)(~,l))t; On(h) (0~, x , t ,  p, ~;) �9 - (m)  ---- is the wave phase, and ~ , 
Fkm')''ntK)" ~nU$~) are to be determined. Therefore, the solution is constructed in the form of an 

expansion in waves with fixed wave numbers (a is the independent variable), here slowness of 
the change in its spectrum parameters is assumed. Such an approach is based on ideas pro- 
posed in [20] for one-dimensional conservative systems. 

We obtain from (4), (6)-(9) by omitting the subscripts (n, (k)): 
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T) are main fixed; (c~, ~, q0) are determined by solving the Orr-- 
To O(v) accuracy %(z) has bounded values under the condition 

in the expression in the braces in (10): 
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Then to O(v 2) accuracy, we 
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38 



g_; 
0,~" 

O,t~: 
�9 �9 / 

0,t- 
�9 I I " i ' /  " " L  

# 6  8910 

aoo ~oo ~ob 

t.xg, 

o,o'~ 

JOg 

~ 7  
I I I i-P -Iv 
�9 | �9 . . . .  

�9 . : " = 1  

eoo ~uo f~Fx 

Fig. I Fig. 2 

where 
0 

0o~ 
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System (11), (12) describes the space--time evolution of perturbations in an inhomoge- 
neous stream. The equations are valid for an arbitrary kind of initial distribution and, in 
contrast to the case of quasiharmonic packets [7-9, 12-15, 19], contain derivatives with re- 
spect to ~ (3~/3x.3~/3e-3~/3~ = 3~/3x.3~/3~). The spectrum is transformed in the space (x, 

e) of real variables (compare with [6, 7])�9 From the known F (I), ~(1) the ~(1) is deter- t, 
mined. Repeating the procedure for F(2), ~(2), we find @(2), etc. Here ~(m) is t]he solution 
of the ivho~ogeneous Orr--Sommerfeld equation, while the operators F(m), ~(m) contain the terms 

The condition for the existence of trains in a nonparallel stream can be obtained from 
(11). If the initial perturbation is represented by a narrow packet (in ~) ~ ~ exp (--A~2z2/ 
2), Am ~ z -I ~ ~ ~ I, then 

O a  O a .  ~-1 and t >  0~ 0x O~ a~ . . . .  a~ N za ,.,., ~ ~. ( 1 3 )  

Then in a first approximation (I I) takes the form 3a/3a = 0, a = ~(~), and the perturbation 
is represented by a quasiharmonic wave with ~s= ~(~, p)=const, ~=as=~s (y, p) exp'i0 s and the 

phase 0 s = -- ~st + # ~s dx, ~s=~{~s; P)" 

"The problem reduces to taking account of the influence of the nonparallel behavior (~ > 
0) and the finiteness of the spectrum width of the train (~-~ < ~) on its evolution in the 
space (x, t) [7, 8, 12, 13, 21]. The solution can be found by an expansion in the two param- 
eters (~, v) [8, 12], it has meaning under the condition (13) v < ~. This latter means that 
the packet width z ~ A~ -~ should remain greater than the characteristic X = ~-~, but much less 
than the scale of the inhomogeneity v -i [18]. 

The characteristics dx/dt = 3~/3e, de/dt = 3~/3x; d~/~dt = y -- Hr of (11) differ from 
the case of the trains [7, 13, 21] because of the absence of a conservation law for ~. 

Results of computations in a certain range of motion parameters are given in Figs. 7-4. 

The form of the trajectories ~j = ~(ej0, x) for d~/dx = (3~/3x)(3~/3~) -~, ~R/~eex0 = 300~ 
ej(x0, ~j0 ) = eJ0 = 0�9 0.12; 0.14; 0�9 0.18; 0.20; 0.22 is shown in Fig. I (lines I-VII, 
respectively). The dashed lines superpose the location of the neutral curves of the quasi- 
nonparallel theory (making the results dimensionless is performed in the scale U~d2/v with 
62 = vx/U~ so that Re = 6U~/v = R~ee x = 600)�9 The lines n = 0, I, 2,...,10 note the location 
of points at different times t n = n0�9 under the initial conditions ~ = ej0, Rv~-ex = Rf~ex0 
(n = 0). 

The corresponding behavior of ~ and S = In~ along ej(~j0, x) is represented in Figs. 2 
and 3; the location of neutral growth points is no different, in practice, from those given 
by the "nonparallel" theory [2]�9 The spectrum deformation (in ~) at different times t n (the 
lines n-n) is characterized by the dependence S(t) = S(~(t)) represented in Fig. 4. A shift 
to the long-wave oscillation domain is noted. 
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The case of spatial (three-dimensional perturbations) of the stream is easily general- 
ized within the scope of this approach. 

Therefore, the field of an arbitrarily perturbed boundary layer can be traced downstream. 
On the other hand, the initial spectrum is restored by a distribution known in x > x0. This 
former can be used to estimate the transition domain. In fact, if the characteristic motion 
parameters are known in the transition zone, then the spectrum restored upstream can be com- 
pared with the real (measured) spectrum and the critical trajectory ~j(x, ej0) and the value 
xt of the transition are indicated. It is here understood that nonlinear effects are sub- 
stantial in small intervals x while turbulization is due to the "internal" development of 
instability [2, 16, 17]. The critical intensity of each value of ~(~j0, x0) can be tabulated 
for each class of flows. 

Possible considerations about the conditions in the transition zone can be formulated 
on the basis of representations about two kinds of processes [2, 22-24]. Data are obtained 
in [23] about a transition associated with the excitation of spatial harmonics of TS waves. 
Another type (Klebanovskii) is, in our opinion, a result of wave development with a nonlinear 
critical layer and their subsequent destruction [24, 25]. It is important that the nonlinear 
phenomena appear effectively in the neighborhood of the upper branch of the neutral stability 
curve ~k = ~(X) in both cases for the oscillation intensity 0(10-2). Selecting a(Xk, ~j(Xk)) ~ 
10 -2, we find a(x0, ej0 ) = aj(x k) exp -- Sj(x0, Xk.) and ~(x0, ~'30 ) from (20), (21) in the sec- 
tion x0. Comparing the measured and computed crltical spectrum, we determine the trajectory 
~j(x) and its point of intersection ~k(Xk) = ~j(Xk, ~j0). In a known sense such an approach 
combines the "method of en" [2, 16], where the growths (but not the amplitudes) are computed 
to a certain location on the upper branch of the neutral curve, and the "amplitude method" 
relating the transition point just to the magnitude of the intensity [2, 17]. Evidently, 
it is desirable to establish a correspondence between the initial spectrum and its sources, 
i.e., the solution of the susceptibility problem (see [2, 15], say), for "closedness" of ap- 
plication of the criterion. 

In conclusion, the authors are grateful to V. Ya. Levchenko for attention to and useful 
discussion of the research. 
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